Polyhedron Casting and Backward Analysis

Computational Geometry – Recitation 5

7

Casting

- Can we create a mold for any polyhedron?
- If a polyhedron is castable, does any mold fit?
- Given a legal mold, in what direction we need to translate? Upwards?

Definitions

- A polyhedron to cast $\mathcal P$
- Each face of \mathcal{P} , f , have a corresponding face in the mold \hat{f} .
- The (outward) normal of $f \vec{\eta}(f)$.
- Direction of translation \vec{d} .

• Which directions \vec{d} are valid?

- We want the angle between \vec{d} and $\vec{\eta}(f)$ to be at least 90°.
- For each face!

• Lemma: The polyhedron P can be removed from its mold by a translation in direction \vec{d} if and only if \vec{d} makes an angle of at least 90° with $\vec{\eta}(f)$ for all f.

 \mathcal{P}

- Only if We have already seen.
- If The same reasoning holds for any collision, if P is about to collide with the mold at face \hat{f} then the angle between \vec{d} and $\vec{\eta}(f)$ is less than 90°.

• Let us write the directions as vectors –

$$
\vec{d} = (d_x, d_y, 1) \quad \text{Why 1?}
$$
\n
$$
\vec{\eta} = (\eta_x, \eta_y, \eta_z)
$$

- Recall that $\vec{d} \cdot \vec{\eta} = |\vec{d}| \cdot |\vec{\eta}| \cdot \cos(\theta)$
- We want θ to be greater than 90° for all faces, that is: $\vec{d} \cdot \vec{\eta} \leq 0 \Rightarrow$ $d_x \eta_x + d_y \eta_y + \eta_z \leq 0$
- How do we solve it for all faces?

• We want θ to be greater than 90° for all faces, that is:

$$
\vec{d} \cdot \vec{\eta} \le 0 \Rightarrow
$$

$$
d_x \eta_x + d_y \eta_y + \eta_z \le 0
$$

- How do we solve it for all faces?
- Linear programing!
- Corollary: we can decide if a polyhedron is castable in $O(n^2)$ expected time.
	- Why $O(n^2)$?

Backward analysis

- What is the worst-case time complexity of the following algorithm?
- And the expected time?

```
Algorithm PARANOIDMAXIMUM(A)
```
- if card $(A) = 1$ 1.
- **then return** the unique element $x \in A$ 2.
- **else** Pick a random element x from \overline{A} . 3.
	- $x' \leftarrow$ PARANOIDMAXIMUM $(A \setminus \{x\})$
- if $x \leq x'$ 5.

4.

- then return x' 6.
- 7. **else** Now we suspect that x is the maximum, but to be absolutely sure, we compare x with all card $(A) - 1$ other elements of A .
- 8. return x

Backward analysis

• Worst case:

•
$$
T(n) = T(n-1) + O(n) = O(n^2)
$$

Algorithm PARANOIDMAXIMUM(A)

if card $(A) = 1$ 1.

 $\overline{4}$.

5.

6. 7.

8.

- **then return** the unique element $x \in A$ $2.$
- $\overline{3}$. else Pick a random element x from A .
	- $x' \leftarrow$ PARANOIDMAXIMUM $(A \setminus \{x\})$
	- if $x \leq x'$
		- then return x'
	- else Now we suspect that x is the maximum, but to be absolutely sure, we compare x with all $card(A) - 1$ other elements of A.
	- return x

Backward analysis

• Expected time:

•
$$
E(T(n)) = E(T(n-1)) + E(f(n))
$$

\n
$$
= E(T(n-2)) + E(f(n)) + E(f(n-1))
$$
\n
$$
... = \sum_{i=1}^{n} f(i)
$$
\nAlgorithm PARANOIDMAXIMUM(A)\n
$$
= \frac{i-1}{i}O(1) + \frac{1}{i}O(i)
$$
\nAlgorithms PARANOIDMAXIMUM(A)\n
$$
= \frac{i-1}{i}O(1) + \frac{1}{i}O(i)
$$
\n2. then return the unique element $x \in$

- **then return** the unique element $x \in A$ 2.
- $\overline{3}$. else Pick a random element x from A .

 $x' \leftarrow$ PARANOIDMAXIMUM $(A \setminus \{x\})$

if $x \leq x'$

 $\overline{4}$.

5.

6. 7.

8.

then return x'

else Now we suspect that x is the maximum, but to be absolutely sure, we compare x with all $card(A) - 1$ other elements of A.

return x